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Roughness effect on the frictional force in boundary lubrication
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The influence of surface roughness on the frictional force between two walls separated by a thin liquid
film is investigated. It is shown that the presence of roughness increases essentially the frictional force in
confining systems and can lead to the time dependence of the friction. Both effects are related to the
morphology of rough interfaces. A new dependence of the frictional force on the thickness of the liquid

film is found.

PACS number(s): 68.45.—v, 68.15.+¢

I. INTRODUCTION

Many attempts have been made to investigate friction,
adhesion, and lubrication at the solid-liquid interface [1].
An increasing number of applications require an under-
standing of lubricants in confined geometries when
liquid-film thicknesses become comparable to molecular
dimensions. Advances in our understanding of the
phenomenon of friction are facilitated by the recent de-
velopment of new tools that allow the study of contacts at
microscopic scales. These new tools are the surface-force
apparatus (SFA) [2-4] and the atomic-force microscope
(AFM) [5,6]. Also the quartz-crystal oscillators have
been used to determine the frictional forces between a
surface and an adsorbed film of one or more monolayers
[7]. Different theoretical approaches [1,8—13] have been
proposed to explain the microscopical features of the fric-
tion in confined geometries. Analytic models and
molecular-dynamics computer simulations have provided
much insight into the phenomenon of friction at the
atomic scale. But so far the fundamental microscopic un-
derstanding of the phenomenon remains limited.

A common feature of all theoretical approaches is the
consideration of atomically flat surfaces and the neglec-
tion of surface roughness. But real surfaces including
atomically flat are always characterized by a certain
roughness whose degree depends on the actual material,
the method of surface treatment, and the presence of ad-
sorbed particles on the surface. The nonuniform micro-
scopic structure of the liquid layers strongly bounded
with the surface can introduce an additional effective
roughness. It was shown experimentally [14] that surface
roughness can drastically affect the friction in confined
geometry.

In this paper we concentrate on the question of the
influence of surface roughness on the frictional force be-
tween two walls separated by a thin liquid film. The
liquid flow generated by moving one of the walls is calcu-
lated by the perturbation method of Rayleigh [15] and
Fano [16]. A similar approach was used recently for the
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description of the effect of roughness on the frequency of
a quartz-crystal resonator in contact with a liquid [17].

We consider here the effect both of a randomly rough
surface and a periodical corrugation. It is shown that the
presence of roughness essentially increases the frictional
force in the confining system and can lead to the time
dependence of the friction. Both effects are related to the
morphology of rough interfaces. The new dependence of
the frictional force on the thickness of the liquid film is
found.

II. THE MODEL

To model the experimental system we consider two
rough walls separated by a thin liquid film (see Fig. 1). A
liquid flow was generated by moving the bottom wall at
constant velocity ¥, in the direction along the y axis.
The rough interfaces between the walls and the liquid are
described by the equations z=§(x,y) and z=d
+&,(x,y) giving the local heights of the walls with
respect to reference planes. The reference planes z =0
and z =d are chosen so that the spatial averages of the
surface profile functions &,(x,y) and &,(x,y) vanish. Here
d is the average thickness of the liquid film.

The fluid velocity V(r,t) is the solution of the linear-
ized Navier-Stokes equation
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where P(r,t), 1, and p are the pressure, the viscosity, and
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FIG. 1. A schematic illustration of the geometry used in our
model.
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the density of the fluid. The velocity must also satisfy the
incompressibility condition

VV(r,t)=0. ()

We will use the stick boundary conditions for the fluid
velocities at the movable z=¢&,(x,y —Vt) and fixed
z =d +§,(x,y) interfaces.

=£,(x,y —Vot)=V,,
=d +&,(x,y))=0 .

This is one of the fundamental assumptions in fluid
mechanics [20]. While experiments at macroscopic scales
are consistent with the stick boundary condition, recent
measurements, which probe molecular scales, indicate
that the boundary conditions may be different [7,21].
Molecular-dynamics simulations [10,11] showed that the
degree of slip at the interface is related to the liquid
structure induced by the solid wall. At large interactions
between liquid molecules and the substrate the first one
or two liquid layers became locked to the wall. We will
focus on this case only.

We will solve the problem by the perturbation theory
[15-17] which is valid for slightly rough surfaces,
|V§ 1,2(x» y| << 1. For such surfaces the characteristic size
of roughness in the z direction (the root mean square
height), h, is less than the tangential one (the correlation
length or the period), /. The height & denotes the root
meal square departure of the surface from flatness, and
the correlation length / is a measure of the average dis-
J
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tance between consecutive peaks and valleys on the rough
surface.

In order to solve Egs. (1)-(3) it is convenient to Fourier
transform the profile functions, the velocity, and the pres-
sure from the tangential coordinates R=(x,y) and the

time ¢ to the corresponding wave vectors K=(K,,K,)
and the frequency w according to equations
£2(K)= [dR & ,(R)exp(—iK'R),

(4)

V(K,z,0)= [dR [ dt V(r,t)exp[ —i(K-R+at)] .

then Egs. (1) and (2) may be rewritten in the form

ioV(K,z,0)=—— 1K+nzai P(K,z,0)
aZ
+1 |5 -K? VK, z0), (5)
p |3z
d
iK+n, 13, V(K,z,0)=0 (6)

Here n, is the unit vector in the z direction. It follows
from Egs. (5) and (6) that the pressure P(K,z,w) obeys
Laplace equation

a2
z?

—K? |P(K,z,0)=0 )

The solutions of Egs. (3) and (5)-(7) have the form [17]

P(K,z,0)=P,(K,0)exp(—Kz)+P,(K,w)exp(Kz) , (8)
Va(K,z,w)=(21r)3V0(l—z/d)Sa’yS(K)S(w)+ A, (K,0)exp(—ggz)+ A4, ,(K,0)exp(ggz)
——la;Ka[P,(K,w)exp(—Kz)+P2(K,co)exp(Kz)], a=x,y , 9)
VZ(K,z,w)=L2Ka[Aayl(K,w)exp(—qKz)—Aa,Z(K,w)exp(qKz)]
K «a
—P,(K,w)exp(Kz)] . (10)

_p_K[P1(K ,o)exp(—

Here
K=IK|, gx=(iwp/n+K*'/?

and V,(K,z,0) and V,(K,z,0) are the projections of the
vector of the velocity V(K,z,») on the axes a=x, y, and
z correspondingly. The first term in the right-hand side
of Eq. (9) is the solution of the hydrodynamical problem
for two flat interfaces.

The coefficients 4, ;(K,w) and P;(K,w), for i =1,2,
are obtained from the boundary conditions (3). The
method of the calculation of the coefficients is described
in the Appendix.

After the determination of the fluid velocity V(r,w) the
frictional force per unit area, F, can be found from the
energy balance in the system. The rate of the change of
kinetic energy of the liquid, E,;,, should be equal to the

[
sum of the frictional work in unit time and the rate of en-
ergy dissipation, Q, in the liquid
d
E E kin

where S is the area of the bottom wall.

It should be noted that, in the problem under con-
sideration, the change of the kinetic energy is much
smaller than the dissipation,

=FV,S+0 , (11)

dEkin
T/Q ~pVod?/ql <<1,

and it will not be taken into account below. The rate of
energy dissipation can be written in the form

av; v 3 av;
ar ar;

d+§2(R)

=—ﬂdef§,R v (12)
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In order to determine the first non-negligible correc-
tion to the friction force due to the influence of roughness
we have to find the coefficients 4,,(K,») and P;(K,®)
up to the second order with respect to the root mean

square height of the roughness, 4. It follows from Egs.
J

(11) and (12) that it suffices to find the second-order
corrections only for the y-component of the velocity,
V,?, at zero value of the two-dimensional wave vector K.
To the first and the second orders we have

14
ViV(K,z,1)= 7°[§1(K)exp(i1<y Vot)fj(Kd,z/d,$)+&,(K)f;(Kd,1—z/d,$)), j=x,p,z, (13)

V. '
V2K =0,z,t)=d—2f(%;TK)—Z[Q(K’)Q(—K')exp(iKy’ Vot)2z/d —1)r,(K'd, )

+[&(K)*1—z/d)— |&(K") %2 /d]ry)(K'd,$)} , (14)

where ¢ is the angle between the wave vector K and the
axes X.

It should be mentioned that the main contribution to
the final result is given by the values of K, which are of
the order of the inverse correlation length (or the period)
of the roughness, 1//. In the case of slightly rough sur-
faces the correlation length is approximately hundreds of
angstroms or larger [18,19]. In the experiments with a
J

surface-force apparatus’™* the separation between the
walls, d, is of the order of tenths of angstrom. Hence the
condition d /I <<1 is usually satisfied. Under this condi-
tion it suffices to calculate the functions f;(Kd,z/d,)
and r ,(Kd,¢) at small values of the parameter Kd. Up
to the second order with respect to the parameter Kd we
obtain the following expressions for the functions

2
fo(Kd,z/d,)=3(z /d)(z/d —1)sin(2$)+ “:‘é’ (2/d)[7+3(z/d)—25(z /d Y+ 15(2 /d)* Jsin(24) ,
f,(Kd,z/d,¢)=2z/d +3(z/d)(z/d — 1)sin*($)
2
+ (Izg) (2/d)(1—z2/d){ —3—15(z /d 2+ [ 15(z /d)— 10(z /d)—T]cos(26)} ,
(15)
f.(Kd,z/d,¢)=iKd(z /d)*(1—z /d)sin(¢) ,
ri(Kd,¢)=1—3sin’(¢)—[L— & sin’(¢)](Kd)* ,
r,(Kd,$)=1+3sin’($)—[ L1+ L sin*(¢)[(Kd)* .
After the substitution of Egs. (13) and (14) into Egs. (11) and (12) we arrive at the final result for the frictional force
_ 1 dK 2 ) ,
F=F, 1+§;2—f B )2{[|§1(K)I +16,(K)[*]a, (Kd,¢)+&(K)E(—K)exp(iK, Vot)a,(Kd, b))} | (16)
o
where
a,(Kd,$)=3—3 cos(2¢)—(Kd)*[ L — & cos(2¢) ]+ O((Kd)*) ,
17)

a,(Kd,$)=1—3cos(2¢)+(Kd)*[ &+ L cos(2¢)] +O((Kd)*) ,

10

and F,=nV,/d is the frictional force for the liquid film
between two flat walls [20]. The corrections to the fric-
tion due to the roughness of the walls depend on the root
mean square heights 4, and A, and the pair correlation
functions g;;(K)

&(K)E;(—K)=Sh;h;g;(K), i,j=12. (18)

The functions g, and g,, specify the geometrical struc-
tures of the bottom and the top walls, respectively, and
the cross function g, describes possible correlations be-
tween these structures. Equation (16) can be used for the
description of the effect both of a random roughness and

a periodical corrugation. In the last case we just substi-
tuted the integral [dK/(27) for the sum S '3y in Eq.

(16).

III. DISCUSSION

Equation (16) constitutes the central result in the study
of the influence of roughness on the frictional force in
boundary lubrication. The frictional force contains two
contributions of different origin. The stationary term in-
cluding the correlation functions g,;(K) and g,,(K) de-
scribes the effect of each rough wall on the hydrodynami-
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cal flow in the liquid film. The time-dependent cross
term containing g;,(K) is due to the interaction between
perturbations of the flow at the different walls.

In this section we discuss the dependencies of the fric-
tional force on the correlation properties of roughness.
Let us consider the two types of surface morphologies.

A. Periodical corrugation, £;(R)=hsin(2my /1)
and §2(R)=hzsin(2‘rry/12 +}')

For the corrugations with different periods, /,7#1,, the
frictional force does not depend on the time and has the
form

2272

Yo 2
Fy=n—r l”?”‘“h%)_T

(h%/l%+h§/1§)] )

(19)

For the corrugations with the same periods, | =1, =1,,
there arises the additional time-dependent correction to
the frictional force

2
1= 27 g2 12

15 cos(2mwVyt/1—vy) .

VO
Fz=277h1hz“dT

(20)

Both the time-dependent and the time-independent
corrections are of the same order of magnitude and are
inverse proportional to the third power of the distance
between the walls, d.

The approach developed here can also be applied for
studying the effect of microscopic nonuniformity of inter-
face induced by the atomic periodicity of the wall.
Atomic scale periodicity of the frictional force has been
observed in AFM measurements on the basal plane of
graphite [S5]. Our consideration demonstrates that the
J

F=Fst+Ft’

Vo 5 14
F,=n— |14+ |——— |(h?+h2) |,
st 7Id 2d2 512 ( 1 hZ)

312 /A +exp(—A2 /1%)

Vo
Fz=77h1h2—dTE

where A, =(Y, —Y,—V,t). The time-dependent contri-
bution to the frictional force equals zero in the absence of
correlations between the roughnesses of the different
walls, but the equation (22) for the stationary contribu-
tion conserves its form.

The results obtained demonstrate that the presence of
the roughness increases the frictional force and leads to
the new dependence of F on the distance between walls.
The time-independent correction F,, — F, is proportional
to the sum of the mean square heights of roughnesses.
We expect that under the experimental conditions, when

4-31%/AL +
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periodical wearless friction can arise in this experiment if
water or some other lubricant penetrates into the contact
region. The last assumption has already been discussed
in Refs. [5,22] and we hope that the future work will clar-
ify this issue.

B. Random roughness

It is often assumed that random roughnesses obey the
Gaussian distribution which is characterized by the two
parameters: the root mean square height 4 and the corre-
lation length along the surface I. However, the Gaussian
distribution is applicable only for the distances not larger
than a few correlation lengths. Considering the relative
motion of rough surfaces we have to take into account
their properties at the larger scale. At that scale the sur-
face can be represented by the set of identical indepen-
dent regions, (1,, with Gaussian correlations inside each
of them. Under this assumption we can write the surface
profile functions in the following form:

&(R)=ZE(R—-R,), |R,—R,[>],
(&(R'—R,)E;(R—R,))=h;h;g,;(R—R’), @1
Lj=12.

In Eq. (21) the point R, ={X,,,Y,} is the center of the re-
gion Q,, the profile function £;,(R—R,) is not equal to
zero only for RE(), and the angular brackets denote an
ensemble average over various possible configurations in
the region (,. The correlation functions g;; are taken in
the Gaussian form

g, (K)=nl’exp(—I’K?*/4) .
Here we assume that both top and bottom surfaces obey

the same correlation properties. In this case the friction-
al force can be written as follows:

(22)

2d% .2
—151—2(47&,,/1 —11)” , (23)

d /1 <1, the frictional force depends weakly on the slope
of roughness, 4 /1. For atomically flat solid surfaces the
value of 4 is of the order of 1 nm [18,19]. The surface-
force apparatus [2—4] allows the frictional forces to be
measured for the average distance between walls is about
5 nm. Under these conditions the time-independent rela-
tive correction due to the roughness, (F,—F,)/F,,
equals 1.

The time-dependent contribution to the frictional force
arises in the presence of correlations between the geome-
trical structures of two walls only. This effect is propor-
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tional to the product of root mean square heights hh,
and depends both on the short-range (at the scale ~/)
and the long-range (at the scale ~|R, —R,, ;| >>1) prop-
erties of the roughness. The time dependence of the fric-
tional force is shown in Fig. 2. We see that the presence
of the long-range structure leads to the oscillating
behavior of the frictional force as a function of time with
the extrema at the points z, =(Y, —Y,)/V,. For the ve-
locity ¥,~0.05 um/sec and |Y,—Y, /=1 um the in-
terval between the nearest extrema should be about 20
sec. The amplitude of the oscillations is of the order of
F,/3 for the values of the parameters used before. We
believe that these oscillations can be observed in the SFA
experiments.

Unlike our situation, in the experiments [2—4] the bot-
tom wall is coupled through a spring to a stage moving at
constant velocity and moves at a variable velocity. How-
ever, it should be noted that Egs. (16), (22), and (23) for
the frictional force can also be used for the description of
the nonstationary situation if the inequality

|dVy/dt| /Vy<n/pd?=10"0sec™!

takes place. It is clear that the last inequality is satisfied
in the experiments with the surface force apparatus.
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FIG. 2. Time dependence of the frictional force per unit area.
The solid line shows the relative correction to the classical re-
sult, Fy, due to the roughness; the dashed line is the relative
correction frictional force for uncorrelated roughnesses. The
calculations were carried out for the following values of the
parameters: h,=h,=1 nm, d=5nm, [=0.1pum,
V,=0.05 um/sec, |R, —R, ;|=1 um.

APPENDIX

Using Eqgs. (8)-(10) and taking Fourier transforms of both sides of Egs. (3) we obtain the following.

1. At the movable interface z =§;(x,y — ¥V, t)

dK / , /
/ 2m)? [Aa,1(K,w'>{eXp["qK&(R)]]x'K+ 44 (K,0') {exp[gg §(R)]}x —k

1

—;;KG(PI(K,w'){exp[—Kgl(R)]}K,_K+P2(K,w'>{exp[K§1(R)]}K'-x)

=(2m)Vod,,80—K,Vo)E(K')/d , (A1)
dK ] ’ ’ ’ ’
S50 |2 K401 (K0 [expl — gk 61(R) ek — A2 (K, 0 fexplax £1(R) )
(2m) dx «
——p’;,-K(m(K,m'){exp[—K§1<R>]1K._K—P2<K,w'){exP[Kg(R)]}K,,K) =0, (A2
where o' =w— (K, —K, )V, and gx =gk (@’).
2. At the fixed interface z =d +xi,(x,y)
dK
f(2 2 Ay (K, 0)exp{ —qx[d +5(R)]))x —x + 44K, 0)(expigx[d +E(R) Pk x
a
_p_lw.Ka[Pl(K,w)(exp{—K[d+§2(R)]})K,‘K+P2(K,m)(exp{1<[d+§2(R]})K,,K]
=(27)V8,,,8(w)8x(K") /d ,  (A3)
dK ] .
f(2ﬂ-)2 q#zKa[Aayl(K,w)(exp{—qK[d+§2(R)]])K:-K—Aa72(K,w)(exp{qK[d+§2(R)]})K:_K]
K «

—;%K[PI(K,co)(exp{ —K[d+E&R)] gk —Pr(K,w)exp{K [d +&,(R)]} )K'_K]} =0. (A4)
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In Egs. (A1)-(A4) we introduced the following definition:
(exp{ —p[&;(R)]D—x= [ dRexp{ —p[£;(R)]}exp[ —i(K'~K)R], j=1,2 (AS)

Coupled Eqgs. (A1)-(A4) allow us to express coefficients 4, ,;(K,») and P;(K,®) through the velocity of the bottom
wall. We remark that the matrix elements of the type {exp[gx&;(x,y)]}x _g are not symmetrical functions of K and

K, since K’ does not appear in the exponent.
We will solve Egs. (A1)-(A4) within the perturbation theory with respect to the slope of roughness, |V& j(R)l «<1.

At this condition we can expand the matrix elements (exp(p§;(x,y))g g in a power series of p£;(K),

{expl —p&;(R) )} x =8(K'—K)—p&;(K'—K)+1p2 [ %gj(x'—x—x")gj(x"w e (A6)
m

and solve Egs. (A1)-(A4) by iterations. As a result we arrive at Egs. (15) and (16) for the fluid velocity.
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